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TECHNOLOGY AND APPLICATION

A complex network approach for nanoparticle
agglomeration analysis in nanoscale images
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Abstract Complex networks have been widely used
in science and technology because of their ability to
represent several systems. One of these systems is
found in Biochemistry, in which the synthesis of new
nanoparticles is a hot topic. However, the interpre-
tation of experimental results in the search of new
nanoparticles poses several challenges. This is due
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to the characteristics of nanoparticle images and due
to their multiple intricate properties; one property
of recurrent interest is the agglomeration of parti-
cles. Addressing this issue, this paper introduces an
approach that uses complex networks to detect and
describe nanoparticle agglomerates so to foster easier
and more insightful analyses. In this approach, each
detected particle in an image corresponds to a vertice
and the distances between the particles define a cri-
terion for creating edges. Edges are created if the
distance is smaller than a radius of interest. Once
this network is set, we calculate several discrete mea-
sures able to reveal the most outstanding agglomerates
in a nanoparticle image. Experimental results using
images of scanning tunneling microscopy (STM)
of gold nanoparticles demonstrated the effectiveness
of the proposed approach over several samples, as
reflected by the separability between particles in three
usual settings. The results also demonstrated efficacy
for both convex and non-convex agglomerates.

Keywords Nanoparticle cluster · Agglomeration
analysis · Complex networks · Computer simulations

Introduction

Synthetic nanoparticles have been widely investigated
because of their applicability, including drug delivery
in medicine (Sugahara et al. 2009), cancer treatment
and diagnostic tools (B K et al. 2011), and industrial
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products, such as cosmetics (Lorenz et al. 2011), semi-
conductor, and photovoltaics (Emin et al. 2011), to
name a few. They are designed to have special physical
and chemical properties that reflect in their struc-
tural characteristics and interaction (Masciangioli and
Zhang 2003). However, the development and use of
new nanoparticles are still constrained by the lack of
specialized tools to interpret experimental results, so
to characterize such particles (Ding and Bukkapatnam
2015). A particular line of investigation is the safety
to human beings. This is because they are more chem-
ically reactive and bioactive, penetrating organs and
cells easily. Actually, toxicological studies (Li et al.
2012) have shown that some nanoparticles are harmful
to humans.

To better understand the impact of real and syn-
thetic nanoparticles, material scientists use analyti-
cal devices whose output are grayscale images of
nanoparticles. After the synthesis process and imag-
ing of the nanoparticles, an important task is to extract
measurements from such images. Hassellöv and Kaegi
(2009) described key visual characteristics that need to
be assessed, including concentration, particle size dis-
tribution, particle shape, and agglomeration. Despite
the importance of nanoparticle assessment, there is a
limited number of works on the characterization of
nanoparticles by means of image analysis.

Fisker et al. (2000) developed an automatic method
to estimate the particle size distribution based on a
deformable ellipse model applied to ferromagnetic (a-
Fe1−x-Cx) and hematite (α-Fe2O3) nanoparticles. In
the work of Park et al. (2012), the authors propose
a semi-automatic method to perform shape analysis
over the particles. In the work of Park et al. (2012),
the authors used six images of transmission electron
microscopy (TEM) to characterize the shape of gold
nanoparticles by representing boundary corners into a
parametric curve. Although the authors created a rota-
tion invariant approach, the reconstruction depends
on the corners that the algorithm detects. This idea
is sensitive to the edges detected by Cany’s algo-
rithm (Canny 1986). Furthermore, since the border
detection fails for a number of cases, they recon-
struct the particles with incomplete boundaries using
functional-PCA (FPCA) (MC Jones 1992) and the
gravity center of each shape. Since the dimension-
ality is very high, the authors used the curve rep-
resentation to reduce the number of features with a
multidimensional projection method, named Isomap

(Tenenbaum et al. 2000). Finally, they classified the
shapes using graph-based clustering and a k-nearest
neighbors method over incomplete boundary informa-
tion. Although this approach presented good accuracy
for nanoparticle shape recognition, they did not focus
on analyzing the groups and interaction of particles.
Vural and Oktay (2014) proposed a method to seg-
ment Fe3O4 nanoparticles in TEM images by using
Hough transform (Duda and Hart 1972). Similarly, a
number of other works (Muneesawang et al. 2015)
used a multi-level image segmentation for measuring
the size distribution of nanoparticles in TEM images.
However, these works disregarded the agglomeration
of particles.

We can find a rich literature with similar nanoparti-
cle problems in biomedical imaging, such as detection
and counting of cells (Liao et al. 2016), morpholog-
ical cell classification (Chen et al. 2012), and cell
tracking (Zhang et al. 2015). Unlike conventional cell
image analysis, agglomeration and interaction analy-
sis of nanoparticles are still a visual counting task.
Such task not only demands an extensive work, but
it is time-consuming. Therefore, modeling the rela-
tionship of nanoparticles in images has emerged as
an interesting line of research to characterize their
interaction and agglomeration. In this scenario, com-
plex networks define a promising model to draw the
relationships observed in nanoparticle images, foster-
ing the comprehension of complex phenomena, most
notably interaction, and agglomeration.

Related works on complex networks

Complex networks (CN) have emerged as a highly-
active research field in the first decade of the twenty-
first century. It came as an intersection between graph
theory and probability, resulting in a truly multidis-
ciplinary field, building on top of mathematics, com-
puter science, and physics, leading to a large range of
applications. Complex networks are natural structures
that represent many real-world systems; its popular-
ity comes from the fact that it is able to model a
large range of phenomena. As an illustration, we can
cite three developments that have contributed to the
research on complex networks: (i) investigation of
the random network model (Erdos and Renyi 1960);
(ii) investigation of small-world networks (Watts and
Strogatz 1998); and (iii) investigation of scale-free
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networks (Barabási and Albert 1999). Recently, works
have focused on the statistical analysis of such net-
works in order to characterize them.

Complex networks have become an important topic
in science due to their ability to model a large number
of complex systems such as interaction in society
(Eustace et al. 2015), processes in biology as protein
interaction (A-L Barabasi 2004), financial markets
(Kaue Dalmaso Peron et al. 2012), computer vision
(Gonçalves et al. 2015), and physics (Gonçalves et al.
2012). In computer science, complex networks have
been used to understand the topology and dynamics
of the Internet (Tyler et al. 2003), characterization
of social networks (Kim et al. 2015), text summa-
rization (Antiqueira et al. 2009), aspects of scientific
co-authorship (Newman 2004), and citation networks
(Porter and Rafols 2009).

Overview of our proposal

Benefiting from the potential of complex networks,
we propose a new approach to analyzing nanoparticle
agglomeration. As far as we know, this work is the first
to report the use of complex networks on nanoparticle
images. In the proposed approach, similar to the work
of Fisker et al. (2000), each particle of a nanoscale
image is initially detected using 2D-template match-
ing, described in more details in by Brunelli (2009).
Then, each particle is mapped to a vertex of the com-
plex network. Systematically, a network is built by
connecting each pair of nodes by using a threshold
for density estimation over a certain radius. For each
nanoparticle, we calculate its density, according to
which two particles are linked only if the distance
between them is lesser than a radius and its density
is higher than a given threshold. Then, we represent
our complex network topology by calculating the spa-
tial average degree, and the max degree for networks,
transformed by different values of radius and thresh-
olds. We tested our approach on real-image particles
taken with scanning tunneling microscopy (STM),
a technique that creates high-resolution images of
nanoparticle settings.

This paper is organized as follows. “Complex net-
works” section presents a brief review of the complex
network theory. In “Proposed approach for detection
and agglomeration analysis” section, the proposed
approach for nanoparticle characterization is described

in detail. The experiments conducted and the discussions
of the results are presented in “Results and discussion”
section. Finally, conclusions are given in “Conclusion”
section.

Complex networks

Overview

In general, works using complex networks have two
steps: (i) model the problem as a network; and (ii)
extract topological measures to characterize its struc-
ture. As complex networks are represented by graphs,
every discrete structure such as lists, trees, networks,
and images can be suitably modeled. In this con-
text, the main step is to define the best approach
to represent the given problem as a set of vertices
and connections, so that its complex behavior can be
measured as a CN.

Complex networks representation and measures

Complex networks are represented by graphs. An
undirected weighted graph G = {V, E} is defined
wherein V = {v1, ..., vn} is a set of n vertices and
E = {evi ,vj

} is a set of edges connecting two vertices;
evi ,vj

represents the weight of the connection between
the vertices vi and vj . There are many measures that
can be extracted from a CN to characterize it. The
reader may refer to the work of Costa et al. (2007) for
a review of different classes of measures. We focused
in two simple and important characteristics extracted
from each vertex, the degree and the strength. The
degree of a vertex vi is the number of its connections:

k(vi) =
∑

evi ,vj
∈E

1 (1)

The vertex strength is the sum of the weights of its
connections:

s(vi) =
∑

evi ,vj
∈E

evi ,vj
(2)

The vertex degree and strength describe the inter-
action with neighboring vertices and can be used to
analyze the network structure. Globally, it is possi-
ble to characterize the behavior of the vertices of the
network using the mean degree:

μk = 1

|V |
∑

vi∈V

k(vi) (3)
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and the mean strength:

μs = 1

|V |
∑

vi∈V

s(vi) (4)

In this work, we analyze the degree and the strength
of the vertices to detect regions with strong connec-
tions, which are evidence of vertices agglomerates. In
the context of our application, these regions present
nanoparticle agglomeration, which is the focus of the
work.

Proposed approach for detection and
agglomeration analysis

In this section, we describe our approach for detection
and characterization of nanoparticle agglomerates. For
this purpose, we use template matching to detect
the positions of nanoparticles in nanoscale images.
Subsequently, we build a CN with their relative posi-
tions. Finally, the degree and strength of the resulting
network are used as features to support analysis.

Detection of the particles’ coordinates

In order to detect the coordinates of the nanoparticles,
we use the template-matching technique (Brunelli
2009). This technique uses a convolution mask tai-
lored to a feature of interest; this mask corresponds
to the template, which must carry visual characteris-
tics similar to those of what we want to detect. The
output of the convolution will be high in the regions
of the image whose structure matches the template;
the idea is to multiply the image values by large tem-
plate values—when there is a match the product gets
very high magnitudes compared to the other parts of
the image. The template is constructed by picking
a part of a sample image that contains the pattern
of interest—in our case, we picked a well-defined
nanoparticle T (xt , yt ), where (xt , yt ) represents the
pixels in the template. We refer to a given search
image as S(x, y). The convolution, then, is performed
by moving the center of the template T (xt , yt ) over
each pixel S(x, y) of the image, calculating the sum
of products between the coefficients of S and T over
the whole area spanned by the template. After the con-
volution, the positions with the highest scores will
correspond to the patterns of interest– in our case, the
set of nanoparticles.

Modeling complex networks for nanoparticle
agglomeration analysis

The CN is built after the spatial positions of the
nanoparticles in the image. The network is built con-
sidering each nanoparticle as a vertex. To build the set
E, the weight of the connections is defined accord-
ing to the Euclidean distance– shortly referred to as
a function dist : V × V → R. In order to connect
only close vertices, a radius r ∈ [0, 1] is consid-
ered. First, the edges’ weights, evi ,vj

, are normalized
into the interval [0, 1] dividing its Euclidean distance
distvi ,vj

by the distance between the two more distant
vertices, as follows:

evi ,vj
=

√
(xi − xj )2 + (yi − yj )2

max(distvi ,vj
)

(5)

where xi and yi are the spatial coordinates of
the nanoparticles and max(distvi ,vj

) is the distance
between the two most distant nanoparticles.

Then, the connection between each pair of vertices
is maintained if its normalized Euclidean distance
evi ,vj

is less or equal to r . Moreover, we comple-
ment the normalized weight evi ,vj

with respect to the
threshold radius r , as follows:

evi ,vj
=

{
r − evi ,vj

, if evi ,vj
≤ r

0, otherwise
(6)

It is important to notice that r − evi ,vj
inverts the

edge weight, which was originally the Euclidean dis-
tance. After this operation, the closer any two vertices
are, the higher is their weight. This is performed con-
sidering the vertex strength, that is, stronger vertices
represent higher interplays among neighbors.

The resulting CN contains connections between
vertices inside a given radius, according to the
Euclidean distances. However, this representation
does not consider the agglomeration level of the ver-
tices, which is the main purpose of the problem, i.e.,
the use of a radius to connect close vertices is not suf-
ficient to properly represent agglomerates. To finally
model the network in a proper way, revealing the level
of nanoparticle agglomeration, we propose another
transformation on its topology. A new function is
applied to calculate the density of the vertices, which
represents their relation to their neighbors in terms of
distance. This measure can be calculated using the CN
information obtained so far. It becomes necessary to
extract the degree k(vi) and the strength s(vi) of the



J Nanopart Res  (2017) 19:65 Page 5 of 11 65 

vertices (Eqs. 1 and 2), both measures depending on
the neighborhood of each vertex. The neighborhood is
defined by the radius r , so each vertex inside the dis-
tance defined by the radius value is analyzed. Given a
resulting CN Gr built with a radius r and the respec-
tive degree and strength of each vertex vi , its density
is defined by:

d(vi) = s(vi)

k(vi)
(7)

After calculating the density of each vertex, we nor-
malize the densities so to have a domain of values
inside the range [0, 1].

Since the degree is the number of connections and
the strength is the sum of its weights, the density d(vi)

refers to the average weight of vertices’ neighborhood.
Following the complement operation defined in Eq. 6,
vertices with a larger number of close neighbors tend
to have greater densities.

With the density, it is possible to perform another
transformation to highlight the agglomerates of the
network. We proceed by considering only the con-
nections between vertices with density higher than a
threshold t , discarding the other ones. In this context,
a new CN Gr,t is obtained by analyzing each edge
evi ,vj

, as follows:

evi ,vj
=

{
evi ,vj

, if d(vi) and d(vj ) ≥ t

0, otherwise
(8)

This final transformation results in a CN that better
represents the agglomeration of the vertices, instead

of the limited distance analysis of the first transfor-
mation. It means that the use of the density to define
connections allows selecting edges in regions of inter-
est, i.e., with high density. In the context of the current
application, the network now presents connections
between nanoparticles that pertain to agglomerates;
these connections come according to the radius r and
to the density threshold t . In Fig. 1, the positions in
a real image of nanoparticles is analyzed and a CN is
modeled using radius r = 0.04 and threshold t = 0.5.
The color indicates the density ranging from black/red
(low density) to white/yellow (high density).

Dynamic analysis of complex networks

To analyze a nanoparticle image, it is necessary to
consider its corresponding CN in view of the range
of parameters that influence the formation of agglom-
erates. As mentioned earlier, we consider two param-
eters, the radius r and the threshold t , which affect
the network topology (set of edges) resulting in net-
works with dense or sparse connections—illustrated
in Fig. 2. This variable configuration is useful to
analyze the network considering different analytical
demands—it is possible, for instance, to consider
bigger or smaller agglomerates, denser or sparser, sep-
arated or closer, depending on the material and on
the problem at hand. In fact, a network characteri-
zation cannot be fully complete without considering
the interplay between structural and dynamic aspects
(Boccaletti et al. 2006).

Therefore, to perform a thorough analysis, one
must take into account a set of radii R = {r1, ..., rnr}

Fig. 1 Nanoparticle image modeled as a complex network according to the proposed approach. a Input image. b Density of each
nanoparticle (color-mapped) and connections of the resulting complex network
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Fig. 2 Complex network topology changes by varying the
parameters r and t . Blue arrows correspond to the most rele-
vant areas affected by changing the parameter values. Basically,

if r and t are increased, new edges are created or removed,
depending on the intrinsic agglomeration

and a set of thresholds T = {t1, ..., tnt } able to char-
acterize the network in the amplitude of parameters r

and t . To do so, we build multiple topologies, each one
given by a combination of r and t . The problem, then,
becomes how to put these multiple topologies together
in a coherent mathematical representation. We do it
my means of a feature vector whose dimensions are
given by measures extracted from each r − t complex
network.

Feature vector

Given two sets, R = {r1, ..., rnr} and T = {t1, ..., tnt },
we build |R| × |T | CNs, each one denoted Gr,t . From
each CN we calculate four measures: mean degree
(Eq. 3), max degree kmax = {k(vi)|k(vi) > k(vj ), i �=
j, ∀ vi ∈ V, vj ∈ V }, mean strength (Eq. 4), and max

strength smax = {s(vi)|s(vi) > s(vj ), i �= j, ∀ vi ∈
V, vj ∈ V }. Finally, the feature vector, denoted ϕ, is
formed by the concatenation of the sequence of four
measures of each CN Gr,t , as follows:

ϕ = [μr1,t1
k , kr1,t1

max , ..., μkrnr ,tnt , krnr ,tnt
max ] (9)

The number of features depends on the number of
radii, thresholds, and extracted measures; its cardinal-
ity is given by |ϕ| = nr∗nt∗m, where nr is the number
of radii, nt is the number of threshold values, and m

is the number of measures. For a consistent domain of
values considering any given vectors, the features are
numerically homogenized according to the standard
score (Larsen and Marx 2012) technique; that is, from
each feature we subtract the mean score and divide the
result by the standard deviation of all features.
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Fig. 3 Images for the three levels of nanoparticle agglomeration used in the experiments

Results and discussion

In this section, we evaluate the proposed approach. We
show results in real nanoparticle images by differenti-
ating three different cases of agglomeration.

Image dataset

We built a dataset of nanoparticle images with 10 sam-
ples labeled into three agglomeration cases: case 1,
the images have few groups and the nanoparticles are
uniformly spread; case 2, the number of groups is
larger if compared to case 1, with little nanoparticle
agglomeration; case 3, the images have a strong level
of agglomeration and overlapping. Each kind of image
can be observed in Fig. 3. Notice that nanoparticle
agglomeration might happen in the 3D scenario, with
a strong incidence of overlapping; since our method
works over 2D images, such cases are to be tackled
with alternative techniques (e.g., 3D reconstruction
(Van Doren et al. 2011)), alternatively, the samples
shall be prepared according to a laboratory proto-
col that reduces overlapping. For our experiments, we
have used STM images of gold nanoparticles; standard
reference materials NIST 8011, 8012, and 8013—
NIST�, Gaithersburg, MD, USA. The gold particles
were suspended in a solution of deionized (DI) water
at a concentration of 250,000 particles/mL. In order to
avoid dissolution of the gold nanoparticles, acid was
not added.

Assessing parameters

A problem that raises in our methodology refers to
the choice of the best parameters r and t . These two

parameters render a set of possibilities large enough to
impede the user find the best configuration. We treat
this issue by measuring the quality of the agglom-
erations detected by each pair (r, t); to do so, we
use the well-known measure named silhouette coeffi-
cient (Tan et al. 2005), which was originally proposed
to evaluate clustering algorithms.

In our setting, the silhouette coefficient shall mea-
sure the cohesion and the separation between the
agglomerates detected in a given Gr,t configuration.
Considering a nanoparticle vi belonging to an agglom-
erate, its cohesion avi

is given by the average of the
distances between vi and all the other nanoparticles
belonging to the same agglomerate. In turn, the sepa-
ration bvi

is given by the smallest distance between vi

and all the other nanoparticles belonging to the other
agglomerates. Once we calculate the cohesion and the
separation of a given partice vi , its silhouette value is
given by:

silhouette(vi) = bvi
− avi

max(avi
, bvi

)
(10)

Given a set with n instances and a corresponding
clustering, the silhouette of the whole set is given by
the average of the silhouette (Eq. 10) of all of its
instances. The average silhouette, Eq. 11, provides a
number that characterizes how good is the clustering
(set of agglomerates).

S = 1

|V |
∑

vi∈V

silhouette(vi) (11)

The silhouette can range between −1 ≤ S ≤
1, where larger values indicate better cohesion
and separation between agglomerates, that is, better
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agglomeration. Negative values indicate instances
(nanoparticles) assigned to the wrong agglomerate;
this is because the distances indicate that particles
from other agglomerates are closer than the particles
of the agglomerate to which they were assigned.

Definition of the best values for r and t

We defined the best interval of values by analyzing
the average silhouette (Eq. 11) from CNs built with
different values for parameters r ant t . The radius
was analyzed by varying its value in the range [r1 =
0, rnr = 0.06], while t was analyzed in the range
[t1 = 0.1, tnt = 0.9]. For each combination of val-
ues, we calculated the silhouette value for each image.
We summarize the multiple silhouette values using
mean; hence, the y-axes of our images are labeled
mean silhouette. With this configuration, we note that
the domain given by parameters r and t renders a 3D
plot, that is, a surface of silhouette values. We do not
plot the surface, since static 3D images are of little
use; instead, we present the best section of the surface
in Fig. 4. This section includes the highest silhouette
values of the r-t domain.

The results allow to detect and discard values from
the radius interval that do not produce good detection
of agglomerates. We can observe that radius values
in the range 0 < r < 0.015 are not sufficient to
connect nanoparticles/vertices in the CN. In these set-
tings, it was not possible to identify proper sets of
agglomerates; therefore, it was not possible to calcu-
late the silhouette, which explains the silhouette 0. We
also discard values in the range [0.015, 0.035] due to
the inconstant results that are observed; although there
is a peak at radius 0.0215. By analyzing other val-
ues, it is possible to notice that the best results are
achieved in the range [0.035, 0.048], a stable inter-
val of silhouette values. Following, there is a decrease
of performance probably caused by CNs with dense
connections that are not useful to discriminate the
agglomerates. Based on these results, we opt for the
radius interval [r1 = 0.03, rnr = 0.05]; accordingly,
the radius set R = {r1, ..., rnr} will be composed
by nr equidistant values ranging from 0.03 to 0.05.
Notice that the curve could be smoother had we used
more images; this is because with a larger number of
values (one per image), the expected average value
would dominate the plot, avoiding spikes. However,
that would demand a very large number of images,
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Fig. 4 Silhouette value in function of the radius r

which were not available and which is not usual in the
corresponding literature (Fisker et al. 2000; Park et al.
2012, 2013; Muneesawang and Sirisathitkul 2015).

We defined the threshold best interval of values by
analyzing the average silhouette in the range [t1 =
0.1, tnt = 0.9] using nt equidistant values.

Evaluation of complex network measures

To characterize the CN structure, four measures were
evaluated: mean degree, max degree, mean strength,
and max strength—refer to “Dynamic analysis of
complex networks” section. We consider each possi-
ble combination among of measures to find the one
that best reflects the silhouette of the agglomerates
identified using the best values of r and t , as explained
in “Definition of the best values for r and t” section.
Each result can be observed in Table 1 along with the
standard deviation of the silhouette value.

According to these results, one notices that the max
degree and max strength do not provide good dis-
crimination if used individually. However, the max
strength proved to be useful if combined with the
mean strength and mean degree, producing the best
result (0.92) using 54 features. The means, individu-
ally and combined, provided results close to the best
(0.88, 0.89, and 0.91 combined), but on the other hand,
they use fewer features (18 individually and 36 com-
bined). The combination of all the features proved to
be not applicable for agglomeration analysis. Finally,
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Table 1 Mean silhouette in perspective of complex network measures mean degree (μk), max degree (μs ), mean strength (μs ), and
max strength (smax)

μk kmax μs smax Number of features Silhouette

X 18 0.88 (±0.11)

X 18 0.15 (±0.13)

X 18 0.89 (±0.07)

X 18 0.24 (±0.35)

X X 36 0.39 (±0.07)

X X 36 0.91 (±0.07)

X X 36 0.91 (±0.08)

X X 36 0.27 (±0.11)

X X 36 0.27 (±0.10)

X X 36 0.33 (±0.18)

X X X 54 0.41 (±0.07)

X X X 54 0.40 (±0.07)

X X X 54 0.92 (±0.07)

X X X 54 0.28 (±0.12)

X X X X 72 0.41 (±0.08)

We used parameter values as pointed out by the results of “Definition of the best values for r and t” section

it is possible to conclude that measures mean strength
(μs) and max strength (smax), together, have the high-
est representativeness with respect to the intrinsic
agglomerative properties of complex networks derived
from nanoparticle images.

Conclusion

The analysis of nanoparticles agglomeration is a
topic of recurrent relevance for the interpretation of
experiments in the field of nanomaterials. Hence, in
this work, we proposed a novel approach for nanopar-
ticle agglomeration analysis based on complex net-
works. Our method innovates in the sense that its
parameters allow for analyses modeled by the inter-
ests of the user, including the material and the problem
at hand; besides, it adheres to a visual analysis. Dur-
ing our experiments, we showed how to identify the
best configuration of parameters by using the met-
ric of silhouette, usually used in clustering problems.
We conducted experiments on three levels of agglom-
eration so to cover usual settings of experimental
environments. The results were quantitatively con-
vincing, demonstrating the feasibility of the method,
which can handle a large number of particles at the

same time that it is much faster and less subjective
than commonly used manual techniques.

The results support the idea that our approach can
be used in nanoparticle analysis in material engineer-
ing, improving visual analyses for important indus-
tries, such as cancer treatment, cosmetics, pharmaceu-
tics, photovoltaics, and food.
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